Add like
Add dislike
Add to saved papers

Construction of Small-Sized, Robust, and Reduction-Responsive Polypeptide Micelles for High Loading and Targeted Delivery of Chemotherapeutics.

Biomacromolecules 2018 August 14
Polypeptide micelles, though having been proved to be an appealing nanoplatform for cancer chemotherapy, are met with issues like inefficient drug encapsulation, gradual drug release, and low tumor cell selectivity and uptake. Here, we report on cRGD-decorated, small-sized, robust, and reduction-responsive polytyrosine micelles (cRGD-rPTM) based on poly(ethylene glycol)- b-poly(l-tyrosine)-lipoic acid (PEG- b-PTyr-LA) conjugate for high loading and targeted delivery of doxorubicin (Dox). Notably, cRGD-rPTM exhibited efficient loading of Dox, giving cRGD-rPTM-Dox with a drug loading content (DLC) of 18.5 wt % and a small size of 45 nm at a theoretical DLC of 20 wt %. cRGD-rPTM-Dox displayed reduction-triggered drug release, high selectivity and superior antiproliferative activity toward αv β3 integrin positive MDA-MB-231 breast cancer cells (IC50 = 1.5 μg/mL) to both nontargeted rPTM-Dox and clinical liposomal formulation (LP-Dox). cRGD-rPTM-Dox demonstrated a prolonged circulation time compared with the noncrosslinked cRGD-PTM-Dox control and significantly better accumulation in MDA-MB-231 breast tumor xenografts than nontargeted rPTM-Dox. Moreover, cRGD-rPTM-Dox at 6 mg Dox equiv/kg could remarkably suppress growth of MDA-MB-231 human breast tumor without inducing obvious side effects, outperforming both rPTM-Dox and LP-Dox. These reduction-responsive multifunctional polytyrosine micelles appear to be a viable and versatile nanoplatform for targeted chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app