Add like
Add dislike
Add to saved papers

Identification and biological evaluation of glycol diaryl ethers as novel anti-cancer agents through structure-based optimization of crizotinib.

Crizotinib, a drug for anaplastic lymphoma kinase (ALK) positive and c-ros oncogene 1 receptor tyrosine kinase (ROS1) positive non-small cell lung cancer (NSCLC), was structurally optimized via a strategy of structure-based fragment replacing. Computational study showed it was beneficial for interaction of crizotinib and ALK to increase the distance between pyridyl ring and phenyl ring in crizotinib, and thus, a series of novel glycol diaryl ethers were synthesized. The in vitro anti-tumor activity of synthesized compounds was studied in NSCLC cell line H2228 and neurobalstoma cell line SH-SY5Y. Among the synthesized compounds, 9e exhibits stronger anti-cancer activity than crizotinib toward H2228 cell line with an IC50 value of 0.22 μM. Molecular docking indicated that a longer chain between pyridyl ring and phenyl ring enabled molecule to have new interaction with a neighboring small hydrophobic pocket.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app