Add like
Add dislike
Add to saved papers

Brain-Derived Neurotrophic Factor in Patients With Age-Related Macular Degeneration and Its Correlation With Retinal Layer Thicknesses.

Purpose: To determine brain-derived neurotrophic factor (BDNF) levels in serum and aqueous humor (AH) and to assess the relationship between BDNF levels and retinal layer thicknesses in age-related macular degeneration (AMD).

Methods: A total of 48 AMD patients (AMD group) that was composed of twenty-three nonexudative and 25 exudative patients and 26 control subjects (control group) were included in the study. Serum and AH BDNF levels were assessed by ELISA method. Retinal layer thicknesses were calculated by segmentation analysis of optical coherence tomography.

Results: The mean BDNF levels in AH were found to be significantly lower in both the nonexudative and exudative AMD groups than in the control group (P = 0.003 and P < 0.001, respectively). Optical coherence tomography segmentation analysis revealed that the total average retina pigment epithelium thickness was statistically significantly thinner in the nonexudative AMD group compared with the exudative AMD and control groups (P = 0.001 and P = 0.040, respectively). The total average outer nuclear layer (ONL) thicknesses of nonexudative and exudative AMD cases were reduced compared to control group; however, the decrement was statistically significant only in the nonexudative AMD group (P = 0.009). In the correlation analysis of BDNF levels with retinal layer thicknesses, statistically significant correlations exist between BDNF levels of AH with ONL thicknesses in cases of AMD and with retina pigment epithelium thicknesses in the nonexudative AMD group.

Conclusions: BDNF concentrations in AH decreased in the AMD group and this decrease correlates with outer retinal layer thicknesses. Low BDNF levels detected in the AMD group may be insufficient to protect the photoreceptors, resulting in thinning of ONL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app