Add like
Add dislike
Add to saved papers

Selective Early Glial Reactivity in the Visual Pathway Precedes Axonal Loss, Following Short-Term Cerebrospinal Fluid Pressure Reduction.

Purpose: To examine the early glial reactivity and neuron damage in response to short-term cerebrospinal fluid pressure (CSFp) reduction, as compared with intraocular pressure (IOP) elevation.

Methods: The experiment included 54 male Sprague-Dawley rats with elevated translaminar cribrosa pressure difference (TLPD), defined as IOP minus CSFp. These rats underwent either continuous CSF drainage for 6 hours (n = 18), or unilateral IOP elevation to 40 mm Hg for 6 hours (n = 18). For control, 18 normal rats were anesthetized for 6 hours. Orthograde axonal transport was examined by intravitreal injection of 3% rhodamine-β-isothiocyanate. We also used transmission electron microscopy to display the ultrastructural features of retinal ganglion cell axons in the optic nerve head. Early glial reactivity in the retina, lateral geniculate nucleus (LGN), and superior colliculus (SC) was detected by immunostaining and Western blot for the glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We also observed the glial reactivity in the inferior colliculus and hippocampus to rule out possible influences of CSF dynamics and composition.

Results: Anterograde staining with 3% rhodamine-β-isothiocyanate revealed decreased fluorescence intensity of the SC and LGN projected from both lower CSFp and higher IOP eyes. Transmission electron microscopy showed loss of axons from the optic nerve head in the high-IOP group, but not in the low-CSFp group. Compared with the anesthesia control group, GFAP expression was significantly increased in the retina, LGN, and SC, whereas GS expression was only increased in the retina following CSFp reduction. However, their expressions were not significantly elevated in the inferior colliculus and hippocampus. In the high-IOP group, expressions of GFAP and GS were significantly increased in the retina, LGN, and SC.

Conclusions: Visual system neurons may be much more sensitive than other nervous tissues. Following short-term CSFp reduction, early glial reactivity may precede axonal loss. Changes of translaminar cribrosa pressure difference in both experimental low-CSFp and high-IOP groups induce selective early glial reactivity. The neuron damage from abnormally low CSFp may be pathogenetically similar to high IOP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app