Add like
Add dislike
Add to saved papers

Ice-Liquid Oscillations in Nanoconfined Water.

ACS Nano 2018 August 29
Nanoscale confinement has a strong effect on the phase behavior of water. Studies in the last two decades have revealed a wealth of novel crystalline and quasicrystalline structures for water confined in nanoslits. Less is known, however, about the nature of ice-liquid coexistence in extremely nanoconfined systems. Here, we use molecular simulations to investigate the ice-liquid equilibrium for water confined between two nanoscopic disks. We find that the nature of ice-liquid phase coexistence in nanoconfined water is different from coexistence in both bulk water and extended nanoslits. In highly nanoconfined systems, liquid water and ice do not coexist in space because the two-phase states are unstable. The confined ice and liquid phases coexist in time, through oscillations between all-liquid and all-crystalline states. The avoidance of spatial coexistence of ice and liquid originates on the non-negligible cost of the interface between confined ice and liquid in a small system. It is the result of the small number of water molecules between the plates and has no analogue in bulk water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app