Add like
Add dislike
Add to saved papers

Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem.

Ecology 2018 September
Despite decades of interest, few studies have provided evidence supporting theoretical expectations for coupled relationships between aboveground and belowground diversity and ecosystem functioning in non-manipulated natural ecosystems. We characterized plant species richness and density, soil bacterial, fungal and eukaryotic species richness and phylogenetic diversity (using 16S, ITS, and 18S gene sequencing), and ecosystem function (levels of soil C and N, and rates of microbial enzyme activities) along a natural gradient in plant richness and density in high-elevation, C-deficient soils to examine the coupling between above- and belowground systems. Overall, we observed a strong positive relationship between aboveground (plant richness and density) and belowground (bacteria, fungi, and non-fungal eukaryotes) richness. In addition to the correlations between plants and soil communities, C and N pools, and rates of enzyme activities increased as plant and soil communities became richer and more diverse. Our results suggest that the theoretically expected positive correlation between above- and belowground communities does exist in natural systems, but may be undetectable in late successional ecosystems due to the buildup of legacy organic matter that results in extremely complex belowground communities. In contrast, microbial communities in early successional systems, such as the system described here, are more directly dependent on contemporary inputs from plants and therefore are strongly correlated with plant diversity and density.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app