Add like
Add dislike
Add to saved papers

Facile and Green Synthesis of Multicolor Fluorescence Carbon Dots from Curcumin: In Vitro and in Vivo Bioimaging and Other Applications.

ACS Omega 2018 January 32
Early detection is the critical phase in the prognostic strategy of various life-threatening maladies like infectious diseases and cancer. The mortality rate caused by these diseases could be considerably reduced if they were diagnosed in the early stages of disease development. Carbon dots (C-dots), a relatively new and promising candidate in the fluorescent nanomaterial category, possess a perceptible impact on various bioapplications. Herein, we report a one-step facile hydrothermal synthesis that yields a novel surface-passivated carbon dot (CDP) from curcumin (as a green substrate) displaying high aqueous solubility. The physico-chemical characterization of thus synthesized C-dots was accomplished by an UV-visible spectrophotometer, fluorescence spectrophotometer, zetasizer, TEM, and FE-SEM to understand the formation of carbon dots with a 4-5 nm size near spherical nanoparticle with high colloidal stability. E. coli DH5α was engaged as the Gram-negative test organism and S. aureus as the Gram-positive in the biolabeling of bacteria. Cancer cell lines including colon cancer (HCT-15), lung cancer (A549), and mouse fibroblast (NIH 3T3) were evaluated and resulted in good biolabeling potential and less cytotoxicity. Zebrafish (ASWT) embryos as an animal model system were bioimaged, and in vivo toxicity was inferred. Moreover, the synthesized C-dots were shown to have free radical scavenging activity in a dose-dependent manner. The unpassivated C-dots (CD) were found to sense ferric ions at the micromolar concentration level. The findings of our study suggest that the multifunctional potentiality of CDPs serves as high-performance optical nanoprobes and can be a suitable alternative for various biolabeling and contrasting agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app