Add like
Add dislike
Add to saved papers

Phytochemical Synthesis of Silver Nanoparticles by Two Techniques Using Saturaja rechengri Jamzad Extract: Identifying and Comparing in Vitro Anti-Proliferative Activities.

Purpose: A lot of plants are available which can produce nanoparticles used in medicine, life sciences, and the pharmaceutical industry. The present study aims to introduce safe biological and eco-friendly methods for synthesizing silver nanoparticles (AgNPs) by using Saturaja rechengri Jamzad extract, which can replace traditional chemical methods. In addition, the chemical nature and antimicrobial activities were identified and accordingly the anticancer effects of AgNPs was successfully reported on colon cancer cells (HT-29). Methods: Light and ultrasound, as two green chemistry techniques were first used for AgNPs synthesis. Then, morphological and crystalline structure of AgNPs was evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, respectively. In addition, functional groups were determined by using the Fourier transform infrared spectroscopy (FTIR) spectrum. Further, a maximum adsorption of AgNPs was observed in UV-visible spectrum. In the next stage, antibacterial activity of green synthesized AgNPs was evaluated against two pathogenic bacteria including Escherichia coli and Staphylococcus aureus. Finally, the cytotoxicity of AgNPs on HT-29 at different concentrations and times of AgNPs was determined by MTT assay. Results: The findings indicated that the synthesis of AgNPs by ultrasonic technique leads to smaller particle size and more distribution. Based on the results of MTT test for calculating the IC50%, the anti-proliferative effects of the light and ultrasound AgNPs were observed on HT-29 cell lines depending on the dose and time. Finally, the AgNPs had the most cytotoxicity HT-29 cell lines at 100 μg/ml concentration although the lowest toxicity effect was reported on HEK-293 cell lines at the same conditions. Conclusion: The change in the concentration, physical and chemical properties of AgNPs including the form and size of particles, and their type of covering and fields can influence the induction of cytotoxicity and morphological change in the treated cells. The present research opens a new horizon on the development of new biological and cytotoxicity agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app