Add like
Add dislike
Add to saved papers

Biocompatible protamine sulfate@silicon nanoparticle-based gene nanocarriers featuring strong and stable fluorescence.

Nanoscale 2018 August 3
The development of biocompatible and fluorescent gene carriers is of particular importance in the gene-delivery field. Taking advantage of the unique optical properties (e.g., strong and robust fluorescence) of silicon nanoparticles (SiNPs), as well as the excellent biocompatibility of silicon and protamine sulfate (PS, approved by the U.S. Food and Drug Administration (FDA) for clinical use), we herein present a type of PS-modified SiNP (PS@SiNP)-based gene carrier. Plasmid DNA (pDNA) with negative charges can be effectively bound onto the surface of the as-prepared fluorescent PS@SiNP-based gene carriers via electrostatic interactions. In particular, such resultant gene carriers possess stable and high fluorescence (photoluminescent quantum yield (PLQY): ∼25%). In addition, the PS@SiNP-based gene carriers show minimal toxic effects on normal mitochondrial metabolic activity (e.g., human retinal pigment epithelial (ARPE-19) cells preserve ∼90% of their cell viability after a 48 h incubation with the resultant carriers). Based on tracking the strong and stable fluorescence signals of SiNPs, the dynamic behavior of the PS@SiNP-based gene carriers in live cells (e.g., clathrin-mediated endocytosis, lysosomal escape, pDNA release, etc.) is investigated in a long-term manner, providing valuable information for understanding the intracellular behavior of gene vectors and designing high-efficacy gene carriers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app