JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Gabapentin Is a Potent Activator of KCNQ3 and KCNQ5 Potassium Channels.

Synthetic gabapentinoids, exemplified by gapapentin and pregabalin, are in extensive clinical use for indications including epilepsy, neuropathic pain, anxiety, and alcohol withdrawal. Their mechanisms of action are incompletely understood, but are thought to involve inhibition of α 2 δ subunit-containing voltage-gated calcium channels. Here, we report that gabapentin is a potent activator of the heteromeric KCNQ2/3 voltage-gated potassium channel, the primary molecular correlate of the neuronal M-current, and also homomeric KCNQ3 and KCNQ5 channels. In contrast, the structurally related gabapentinoid, pregabalin, does not activate KCNQ2/3, and at higher concentrations (≥10 µ M) is inhibitory. Gabapentin activation of KCNQ2/3 (EC50 = 4.2 nM) or homomeric KCNQ3* (EC50 = 5.3 nM) channels requires KCNQ3-W265, a conserved tryptophan in KCNQ3 transmembrane segment 5. Homomeric KCNQ2 or KCNQ4 channels are insensitive to gabapentin, whereas KCNQ5 is highly sensitive (EC50 = 1.9 nM). Given the potent effects and the known anticonvulsant, antinociceptive, and anxiolytic effects of M-channel activation, our findings suggest the possibility of an unexpected role for M-channel activation in the mechanism of action of gabapentin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app