Add like
Add dislike
Add to saved papers

Metal ions increase mechanical strength and barrier properties of collagen-sodium polyacrylate composite films.

From the previous experiment, it was confirmed that the incorporation of 0.3 wt% sodium polyacrylate (PAAS) into collagen (Co) fibers can improve the mechanical properties and thermal stability of the composite films. In this study, Ca2+ , Fe3+ and Ag+ ranging 0.001-0.004 mol/g were used to improve the properties of Co-PAAS blend films based on the rationale of their potential electrostatic interaction with these biopolymers. As expected, Zeta-potential film-forming solutions was decreased to some extent with the addition of metal ions. SEM images presented that the surface of the composites became coarser and internal structure became more stratified as metal ion contents increased. Tensile strength was increased by the addition of these ions with a varied optimal concentration: Ca2+ (0.003 mol/g), Fe3+ (0.002 mol/g) and Ag+ (0.001 mol/g). Water vapor permeability (WVP), solubility and light transmission value of films while causing film thickness no obvious change. In addition, the differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) results indicated that the metal ions improved the thermal stability of the composite film. Therefore, Ca2+ , Fe3+ and Ag+ with an appropriate addition amount can be used as a potential alternative to reinforce collagenous composite materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app