Add like
Add dislike
Add to saved papers

Sodium Iodate Disrupted the Mitochondrial-Lysosomal Axis in Cultured Retinal Pigment Epithelial Cells.

PURPOSE: Low doses of sodium iodate (NaIO3 ) impair visual function in experimental animals with selective damage to retinal pigment epithelium (RPE) and serve as a useful model to study diseases caused by RPE degeneration. Mitochondrial dysfunction and defective autophagy have been suggested to play important roles in normal aging as well as many neurodegenerative diseases. In this study, we examined whether NaIO3 treatment disrupted the mitochondrial-lysosomal axis in cultured RPE.

METHODS: The human RPE cell line, ARPE-19, was treated with low concentrations (≤500 μM) of NaIO3 . The expression of proteins involved in the autophagic pathway and mitochondrial biogenesis was examined with Western blot. Intracellular acidic compartments and lipofuscinogenesis were evaluated by acridine orange staining and autofluorescence, respectively. Mitochondrial mass, mitochondrial membrane potential (MMP), and mitochondrial function were quantified by MitoTracker Green staining, tetramethylrhodamine methyl ester staining, and the MTT assay, respectively. Phagocytosis and the degradation of photoreceptor outer segments (POS) were assessed by fluorescence-based approaches and Western blot against rhodopsin.

RESULTS: Treatment with low concentrations of NaIO3 decreased cellular acidity, blocked autophagic flux, and resulted in increased lipofuscinogenesis in ARPE-19 cells. Despite increases in protein levels of Sirtuin 1 and PGC-1α, mitochondrial function was compromised, and this decrease was attributed to disrupted MMP. POS phagocytic activities decreased by 60% in NaIO3 -treated cells, and the degradation of ingested POS was also impaired. Pretreatment and cotreatment with rapamycin partially rescued NaIO3 -induced RPE dysfunction.

CONCLUSIONS: Low concentrations of NaIO3 disrupted the mitochondrial-lysosomal axis in RPE and led to impaired phagocytic activities and degradation capacities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app