Add like
Add dislike
Add to saved papers

Laser Immunotherapy in Combination with Perdurable PD-1 Blocking for the Treatment of Metastatic Tumors.

ACS Nano 2018 August 29
A convenient and feasible therapeutic strategy for malignant and metastatic tumors was constructed here by combining photothermal ablation (PTA)-based laser immunotherapy with perdurable PD-1 blockade immunotherapy. Hollow gold nanoshells (HAuNS, a photothermal agent) and AUNP12 (an anti PD-1 peptide, APP) were co-encapsulated into poly(lactic- co-glycolic) acid (PLGA) nanoparticles. Unlike monoclonal PD-1/PD-L1 antibodies, PD-1 peptide inhibitor shows lower cost and immunotoxicity but needs frequent administration due to its rapid clearance in vivo. Our data here showed that the formed HAuNS- and APP-loaded PLGA nanoparticles (AA@PN) could maintain release periods of up to 40 days for the peptide, and a single intratumoral injection of AA@PN could replace the frequent administration of free APP. After the administration of AA@PN and irradiation with a near-infrared laser at the tumor site, an excellent killing effect on the primary tumor cells was achieved by the PTA. The nanoparticles also played a vaccine-like role under the adjuvant of cytosine-phospho-guanine (CpG) oligodeoxynucleotide and generated a localized antitumor-immune response. Furthermore, sustained APP release with laser-dependent transient triggering could induce the blockage of PD-1/PD-L1 pathway to activate T cells, thus subsequently generating a systemic immune response. Our data demonstrated that the PTA combined with perdurable PD-1 blocking could efficiently eradicate the primary tumors and inhibit the growth of metastatic tumors as well as their formation. The present study provides a promising therapeutic strategy for the treatment of advanced cancer with metastasis and presents a valuable reference for obtaining better outcomes in clinical cancer immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app