Add like
Add dislike
Add to saved papers

Eph Receptor Effector Ephexin Mediates Olfactory Dendrite Targeting in Drosophila.

Deciphering the mechanisms of sensory neural map formation is a central aim in neurosciences. Failure to form a correct map frequently leads to defects in sensory processing and perception. The olfactory map develops in subsequent steps initially forming a rough and later a precise map of glomeruli in the antennal lobe (AL), mainly consisting of olfactory receptor neuron (ORN) axons and projection neuron (PN) dendrites. The mechanisms underpinning the later stage of class-specific glomerulus formation are not understood. Recent studies have shown that the important guidance molecule Eph and its ligand ephrin play a role in class-specific PN targeting. Here, we reveal aspects of the mechanism downstream of Eph signaling during olfactory map formation. We show that the Eph-specific RhoGEF Ephexin (Exn) is required to fine tune PN dendrite patterning within specific glomeruli. We provide the first report showing an in vivo neurite guidance defect in an exn mutant. Interestingly, the quality of the phenotypes is different between eph and exn mutants; while loss of Eph leads to strong misprojections of DM3/Or47a neurons along the medial-lateral axis of the antennal lobe (AL), loss of Exn induces ventral ectopic innervation of a neighboring glomerulus. Genetic interaction experiments suggest that differential signaling of the small GTPases Rac1 and Cdc42 mediated by Exn-dependent and -independent Eph signaling fine tunes spatial targeting of PN dendrites within the olfactory map. We propose that their distinct activities on the actin cytoskeleton are required for precise navigation of PN dendrites within the olfactory map. Taken together, our results suggest that the precise connectivity of an individual neuron can depend on different modes of signaling downstream of a single guidance receptor. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app