Add like
Add dislike
Add to saved papers

Influence of the SPECT calibration source position on the absorbed dose calculation for 131 I-NaI therapy using GATE simulations.

Many research groups have studied nuclear medicine image quantification to improve its accuracy in dose estimation. This work aims to evaluate the influence of the source calibration position for absorbed dose calculation for a 131 I-NaI therapy using Monte Carlo (MC) simulations. The calibration approach consisted of a cylindrical phantom filled with water. A cylindrical 131 I source with 361.1 ± 3.6 kBq ml-1 was positioned at the center of the phantom and its outer part. Images were acquired with 150 00 counts per projection image acquired with SPECT detector (high counts density-HCD) and 3000 counts per projection (low counts density-LCD). MC simulations, performed with GATE code, were validated by comparing the S values of a water sphere uniformly filled with 131 I, as from the sphere model of OLINDA/EXM 1.1. Calibration factors deviation between central and peripheral calibrations is more significant for HCD (18.3%) than for LCD images (3.7%). The 3D dose distribution map obtained from GATE resulted in a dose factor equal to 1.5 × 10-3 mGy/(MBq.s). For both HCD and LCD images, the commonly used approach, which employs the central source calibration to obtain the dose from a peripheral source, resulted in dose overestimation. Results suggest that organ dose calculation can be improved considering the organ position in the field of view. Finally, patients' radiation protection in dosimetry studies could be improved considering the calibration source position, due to the superior accuracy in dose calculation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app