Add like
Add dislike
Add to saved papers

Wear Characteristics of Conventional Ultrahigh-Molecular-Weight Polyethylene Versus Highly Cross-Linked Polyethylene in Total Ankle Arthroplasty.

BACKGROUND:: The aim of this study was to compare the polyethylene wear rate, particle size, and particle shape of primary semiconstrained, fixed-bearing, bone-sparing total ankle arthroplasty using conventional ultrahigh-molecular-weight polyethylene (CPE) versus highly cross-linked polyethylene (HXLPE) by applying a level walking input using a joint simulator.

METHODS:: Two fixed-bearing total ankle replacement systems with different types of polyethylene liners were tested: (1) CPE sterilized in ethylene oxide, and (2) HXLPE sterilized with gas plasma after electron beam irradiation. Three implants for each design underwent wear testing using gravimetric analysis over 5 million simulated walking cycles. A fourth implant was used as a load soak control. Equivalent circle diameter (ECD) and equivalent shape ratio (ESR) were computed to determine particle size and particle shape, respectively.

RESULTS:: The mean wear rate from 1.5 to 5 million cycles (MC) was 2.0 ± 0.3 mg/MC for HXLPE and 16.7 ± 1.3 mg/MC for CPE ( P < .001). The total number of particles per cycle generated for HXLPE and CPE were 0.17 × 106 particles/cycle and 0.53 × 106 particles/cycle, respectively ( P < .001). The mean ECD of HXLPE particles (0.22 ± 0.11 μm) was significantly smaller than the mean ECD of CPE particles (0.32 ± 0.14 μm) ( P < .001). HXLPE particles were significantly more round than CPE particles ( P < .001).

CONCLUSIONS:: HXLPE liners had a significantly lower wear rate and produced significantly fewer and rounder particles than CPE liners. The results of this study suggest that HXLPE has more favorable wear characteristics for total ankle arthroplasty.

CLINICAL RELEVANCE:: Polyethylene wear particles have been linked to osteolysis after total ankle arthroplasty. There is no consensus on the importance of highly cross-linked polyethylene in total ankle arthroplasty with regard to implant wear. This is the first nonindustry study to compare the polyethylene wear rate, particle size, and particle shape of fixed-bearing total ankle arthroplasty conventional polyethylene versus highly cross-linked polyethylene. The lower wear rate and different particle size/morphology of highly cross-linked polyethylene could be beneficial in vivo to decrease osteolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app