Add like
Add dislike
Add to saved papers

Differing Effects of Parathyroid Hormone, Alendronate, and Odanacatib on Bone Formation and on the Mineralization Process in Intracortical and Endocortical Bone of Ovariectomized Rabbits.

Bone is formed by deposition of a collagen-containing matrix (osteoid) that hardens over time as mineral crystals accrue and are modified; this continues until bone remodeling renews that site. Pharmacological agents for osteoporosis differ in their effects on bone remodeling, and we hypothesized that they may differently modify bone mineral accrual. We, therefore, assessed newly formed bone in mature ovariectomized rabbits treated with the anti-resorptive bisphosphonate alendronate (ALN-100µ g/kg/2×/week), the anabolic parathyroid hormone (PTH (1-34)-15µ g/kg/5×/week), or the experimental anti-resorptive odanacatib (ODN 7.5 µM/day), which suppresses bone resorption without suppressing bone formation. Treatments were administered for 10 months commencing 6 months after ovariectomy (OVX). Strength testing, histomorphometry, and synchrotron Fourier-transform infrared microspectroscopy were used to measure bone strength, bone formation, and mineral accrual, respectively, in newly formed endocortical and intracortical bone. In Sham and OVX endocortical and intracortical bone, three modifications occurred as the bone matrix aged: mineral accrual (increase in mineral:matrix ratio), carbonate substitution (increase in carbonate:mineral ratio), and collagen molecular compaction (decrease in amide I:II ratio). ALN suppressed bone formation but mineral accrued normally at those sites where bone formation occurred. PTH stimulated bone formation on endocortical, periosteal, and intracortical bone surfaces, but mineral accrual and carbonate substitution were suppressed, particularly in intracortical bone. ODN treatment did not suppress bone formation, but newly deposited endocortical bone matured more slowly with ODN, and ODN-treated intracortical bone had less carbonate substitution than controls. In conclusion, these agents differ in their effects on the bone matrix. While ALN suppresses bone formation, it does not modify bone mineral accrual in endocortical or intracortical bone. While ODN does not suppress bone formation, it slows matrix maturation. PTH stimulates modelling-based bone formation not only on endocortical and trabecular surfaces, but may also do so in intracortical bone; at this site, new bone deposited contains less mineral than normal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app