Journal Article
Review
Add like
Add dislike
Add to saved papers

Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes.

The inhalation route is frequently used to administer drugs for the management of respiratory diseases such as asthma or chronic obstructive pulmonary disease. Compared with other routes of administration, inhalation offers a number of advantages in the treatment of these diseases. For example, via inhalation, a drug is directly delivered to the target organ, conferring high pulmonary drug concentrations and low systemic drug concentrations. Therefore, drug inhalation is typically associated with high pulmonary efficacy and minimal systemic side effects. The lung, as a target, represents an organ with a complex structure and multiple pulmonary-specific pharmacokinetic processes, including (1) drug particle/droplet deposition; (2) pulmonary drug dissolution; (3) mucociliary and macrophage clearance; (4) absorption to lung tissue; (5) pulmonary tissue retention and tissue metabolism; and (6) absorptive drug clearance to the systemic perfusion. In this review, we describe these pharmacokinetic processes and explain how they may be influenced by drug-, formulation- and device-, and patient-related factors. Furthermore, we highlight the complex interplay between these processes and describe, using the examples of inhaled albuterol, fluticasone propionate, budesonide, and olodaterol, how various sequential or parallel pulmonary processes should be considered in order to comprehend the pulmonary fate of inhaled drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app