Add like
Add dislike
Add to saved papers

Effects of Surfactant and Urea on Dynamics and Viscoelastic Properties of Hydrophobically Assembled Supramolecular Hydrogel.

Macromolecules 2018 July 11
Physically associated hydrogels based on strong hydrophobic interactions often have attractive mechanical properties that combine processability with elasticity. However, there is a need to study such interactions and understand their relation to the macroscopic hydrogel properties. Therefore, we use the surfactant sodium dodecyl sulfate (SDS) and urea as reagents that disrupt hydrophobic interactions. The model hydrogel is based on a segmented copolymer between poly(ethylene glycol) (PEG) and hydrophobic dimer fatty acid (DFA). We show that both agents influence viscoelastic properties, dynamics, and relaxation processes of the model hydrogel. In particular, the relaxation time is significantly reduced by urea, as compared to SDS, whereas the surfactant causes a decrease of the modulus of the hydrogel more efficiently. The reversibility of the effects of SDS and urea can be exploited, for instance, by using an injectable sol that solidifies when the SDS or urea diffuses out of the sample. Surfactant-induced processability may be advantageous in future applications of hydrophobically assembled physical hydrogels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app