JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress.

Neuropharmacology 2018 September 2
Traumatic injuries to peripheral nerves are frequent, however, specific pharmacological treatments are currently lacking. Curcumin has antioxidant, anti-inflammatory and neuroprotective properties but high oral doses are required for therapeutic use, particularly due to its low bioavailability. The aim of the present study was to investigate the effects of local and continuous treatment using low curcumin doses on functional recovery and nerve regeneration after rat sciatic nerve crush (SNC). Curcumin was administered by osmotic pumps with a catheter delivering the drug at the injury site (0.2 mg/day for 4 weeks). Functionally, early improvements in mechanical sensitivity, finger spacing of the injured paw, skilful walking and grip strength were observed in curcumin-treated animals. The curcumin treatment increased expression of compact myelin proteins (MPZ and PMP22), myelin sheath thickness and, correspondingly, increased motor and sensitive nerve conduction velocity. Microscopic analysis of gastrocnemius muscle indicated a curcumin-induced decrease in neurogenic lesions. Curcumin treatment reduced the production of reactive oxygen species (ROS) (which were notably produced by macrophages), lipid peroxidation and increased expression of transcription factor Nrf2. In silico analyses indicated that curcumin combines all the characteristics required to be an efficient lipid peroxidation inhibitor at the heart of biological membranes, hence protecting their degradation due to ROS. This antioxidant capacity is likely to contribute to the beneficial effects of curcumin after SNC injury. These results demonstrate that, when administrated locally, low doses of curcumin represent a promising therapy for peripheral nerve regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app