Journal Article
Review
Add like
Add dislike
Add to saved papers

Strategies to Annotate and Characterize Long Noncoding RNAs: Advantages and Pitfalls.

The past decade has seen an explosion of interest in long noncoding RNAs (lncRNAs). However, despite the massive volume of scientific data implicating these transcripts in a plethora of molecular and cellular processes, a great deal of controversy surrounds these RNAs. One of the main reasons for this lies in the multiple unique features of lncRNAs which limit the available methods used to characterize them. Combined with their vast numbers and inadequate classification, comprehensive annotation of these transcripts becomes a daunting task. The solution to this complex challenge likely lies in deep understanding of the strengths and weaknesses of each computational and empirical approach, and integration of multiple strategies to reduce noise, authenticate the results, and classify lncRNAs. We review here both the advantages and caveats of strategies commonly used for functional characterization and annotation of lncRNAs in the context of emerging conceptual guidelines for their application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app