Add like
Add dislike
Add to saved papers

How does the piston material affect the in vitro mechanical behavior of dental ceramics?

STATEMENT OF PROBLEM: Variables involving the indication, manufacturing, and clinical use of ceramic restorations make the standardization of in vitro studies a challenge and raise questions as to the clinical validity of the resulting data.

PURPOSE: The purpose of this in vitro study was to assess the effect of piston material on the fracture behavior of ceramics tested under compressive load.

MATERIAL AND METHODS: Two ceramics were evaluated: a lithium disilicate-based glass-ceramic (D) and a feldspathic porcelain (P). Plate-shaped ceramic specimens (1.5-mm thick) were adhesively cemented onto a dentin analog substrate. The specimens from each ceramic were divided into 4 groups according to the piston material (n=20): metal (M) (stainless steel), composite resin (R) (NEMA-G10, fiber-reinforced epoxy resin), ceramic (C) (lithium disilicate-based glass-ceramic), and human tooth (T) (canine). A gradual compressive load (0.5 mm/min) was applied to the center of the specimen with a universal testing machine. The test was performed in 37°C distilled water, and the initial crack was detected by using an acoustic system. The fracture load values (N) were statistically analyzed with the Kruskal-Wallis and Dunn tests (α=.05). A finite element analysis (FEA) was also performed.

RESULTS: Piston material had no influence on fracture load and failure mode of ceramic D. Ceramic P showed higher fracture load values when loaded with the composite resin piston. Ceramic P showed more combined failures (cone crack and radial crack) than D. The FEA showed a distinct stress distribution for R piston on P. Pistons C and T resulted in similar stress distribution, fracture load, and failure mode for both ceramics.

CONCLUSIONS: The effect of piston material on the ceramic fracture behavior depends on the ceramic being evaluated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app