Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The phenotypic and functional properties of mouse yolk-sac-derived embryonic macrophages.

Developmental Biology 2018 October 2
Macrophages are well characterized as immune cells. However, in recent years, a multitude of non-immune functions have emerged many of which play essential roles in a variety of developmental processes (Wynn et al., 2013; DeFalco et al., 2014). In adult animals, macrophages are derived from circulating monocytes originating in the bone marrow, but much of the tissue-resident population arise from erythro-myeloid progenitors (EMPs) in the extra-embryonic yolk sac, appearing around the same time as primitive erythroblasts (Schulz et al., 2012; Kierdorf et al., 2013; McGrath et al., 2015; Gomez Perdiguero et al., 2015; Mass et al., 2016). Of particular interest to our group, macrophages have been shown to act as pro-angiogenic regulators during development (Wynn et al., 2013; DeFalco et al., 2014; Hsu et al., 2015), but there is still much to learn about these early cells. The goal of the present study was to isolate and expand progenitors of yolk-sac-derived Embryonic Macrophages (EMs) in vitro to generate a new platform for mechanistic studies of EM differentiation. To accomplish this goal, we isolated pure (>98%) EGFP+ populations by flow cytometry from embryonic day 9.5 (E9.5) Csf1r-EGFP+/tg mice, then evaluated the angiogenic potential of EMs relative to Bone Marrow-Derived Macrophages (BMDMs). We found that EMs expressed more pro-angiogenic and less pro-inflammatory macrophage markers than BMDMs. EMs also promoted more endothelial cell (EC) cord formation in vitro, as compared to BMDMs in a manner that required direct cell-to-cell contact. Importantly, EMs preferentially matured into microglia when co-cultured with mouse Neural Stem/Progenitor Cells (NSPCs). In conclusion, we have established a protocol to isolate and propagate EMs in vitro, have further defined specialized properties of yolk-sac-derived macrophages, and have identified EM-EC and EM-NSPC interactions as key inducers of EC tube formation and microglial cell maturation, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app