Add like
Add dislike
Add to saved papers

Self-powered wearable sensing-textiles for real-time detecting environmental atmosphere and body motion based on surface-triboelectric coupling effect.

Nanotechnology 2018 October 6
Self-powered wearable sensing-textiles for real-time detecting environmental atmosphere and body motion have been presented. The textile is based on highly-stretchable conductive ecoflex fiber modified with multiwall carbon nanotube and polyaniline (PANI) derivatives (acting as one electrode). The surface of the fiber is twined with varnished wire (acting as the other electrode). Upon applied deformation of stretching or bending, the sensing-textile can harvest the mechanical energy and output electric signals through the triboelectrification effect between PANI and varnished wire. After being attached on the human body, the triboelectric output of the sensing-textile can be used to monitor body motion, including finger bending and body stretching. Interestingly, the triboelectric output of the sensing-textile is significantly dependent on the atmosphere, which can actively distinguish different gas species in the environment. The sensitivity, stability and selectivity against ethanol, ammonia, acetone and formaldehyde are high. The response against 400 ppm ethanol vapor at room temperature is up to 54.73%. The current density is 2.1 × 10-4 A m-2 , and the power density is 4.2 × 10-5 W m-2 . During both the motion detecting and gas sensing processes, no external electricity power is needed. The triboelectric signal can be treated as not only the sensing signal but also the power source for driving the device. The working mechanism is based on surface-triboelectric coupling effect. The present results can promote the development of self-powered wearable electronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app