Add like
Add dislike
Add to saved papers

Conductivity Maximum in 3D Graphene Foams.

Small 2018 August
In conventional foams, electrical properties often play a secondary role. However, this scenario becomes different for 3D graphene foams (GrFs). In fact, one of the motivations for synthesizing 3D GrFs is to inherit the remarkable electrical properties of individual graphene sheets. Despite immense experimental efforts to study and improve the electrical properties of 3D GrFs, lack of theoretical studies and understanding limits further progress. The causes to this embarrassing situation are identified as the multiple freedoms introduced by graphene sheets and multiscale nature of this problem. In this article, combined with transport modeling and coarse-grained molecular dynamic (MD) simulations, a theoretical framework is established to systematically study the electrical conducting properties of 3D GrFs with or without deformation. In particular, through large-scale and massive calculations, a general relation between contact area and conductance for two van der Waals bonded graphene sheets is demonstrated, in terms of which the conductivity maximum phenomenon in GrFs is first theoretically proposed and its competition mechanism is explained. Moreover, the theoretical prediction is consistent with previous experimental observations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app