Add like
Add dislike
Add to saved papers

Improved Outcome in an Animal Model of Prolonged Cardiac Arrest Through Pulsatile High Pressure Controlled Automated Reperfusion of the Whole Body.

Artificial Organs 2018 October
The reperfusion period after extracorporeal cardiopulmonary resuscitation has been recognized as a key player in improving the outcome after cardiac arrest (CA). Our aim was to evaluate the effects of high mean arterial pressure (MAP) and pulsatile flow during controlled automated reperfusion of the whole body. Following 20 min of normothermic CA, high MAP, and pulsatile blood flow (pulsatile group, n = 10) or low MAP and nonpulsatile flow (nonpulsatile group, n = 6) controlled automated reperfusion of the whole body was commenced through the femoral vessels of German landrace pigs for 60 min. Afterwards, animals were observed for eight days. Blood samples were analyzed throughout the experiment and a species-specific neurologic disability score (NDS) was used for neurologic evaluation. In the pulsatile group, nine animals finished the study protocol, while no animal survived postoperative day four in the nonpulsatile group. NDS were significantly better at any given time in the pulsatile group and reached overall satisfactory outcome values. In addition, blood analyses revealed lower levels of lactate in the pulsatile group compared to the nonpulsatile group. This study demonstrates superior survival and neurologic outcome when using pulsatile high pressure automated reperfusion following 20 min of normothermic CA compared to nonpulsatile flow and low MAP. This study strongly supports regulating the reperfusion period after prolonged periods of CA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app