Add like
Add dislike
Add to saved papers

Relaxation of nonequilibrium quasiparticles in mesoscopic size superconductors.

Rapid development of micro- and nanofabrication methods have provoked interest and enabled experimental studies of electronic properties of a vast class of (sub)micrometer-size solid state systems. Mesoscopic-size hybrid structures, containing superconducting elements, have become interesting objects for basic research studies and various applications, ranging from medical and astrophysical sensors to quantum computing. One of the most important aspects of physics, governing the behavior of such systems, is the finite concentration of nonequilibrium quasiparticles, present in a superconductor even well below the temperature of superconducting transition. Those nonequilibrium excitations might limit the performance of a variety of superconducting devices, like superconducting qubits, single-electron turnstiles and microrefrigerators. On the contrary, in some applications, like detectors of electromagnetic radiation, the nonequilibrium state is essential for their operation. It is therefore of vital importance to study the mechanisms of nonequilibrium quasiparticle relaxation in superconductors of mesoscopic dimensions, where the whole structure can be considered as an 'interface'. At early stages of research the problem was mostly studied in relatively massive systems and at high temperatures close to the critical temperature of a superconductor. We review the recent progress in studies of nonequilibrium quasiparticle relaxation in superconductors including the low temperature limit. We also discuss the open physical questions and perspectives of development in the field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app