Add like
Add dislike
Add to saved papers

Using metabolic charge production in the tricarboxylic acid cycle (Q TCA ) to evaluate the extracellular-electron-transfer performances of Shewanella spp.

Bioelectrochemistry 2018 December
Using an electrochemical cell equipped with carbon felt electrodes (poised at +0.63 V vs. SHE), the current production capabilities of two Shewanella strains-NTOU1 and KR-12-were examined under various conditions with lactate as an electron donor. The metabolic charge produced in the tricarboxylic acid cycle (QTCA ) was calculated by mass-balance. The data showed a linear relation between the electric coulomb production (QEL ) and QTCA with an R2 of 0.65. In addition, a large amount of pyruvate accumulation was observed at pH = 6, rendering QTCA negative. The results indicate an occurrence of an undesired cataplerotic reaction. It was also found that QTCA provides important information showing the oxygen-boosting TCA cycle and anodic-current generation of Shewanella spp. Linear dependence of the change in charge for biomass growth (4.52FΔnCell ) on QTCA was also found as expressed by 4.52FΔnCell  = 1.0428 QTCA  + 0.0442, indicating that these two charge quantities are inherently identical under most of the experimental conditions. In the mediator-spiked experiments, the external addition of the mediators (ferricyanide, anthraquinone-2, 6-disulfonate, and riboflavin) beyond certain concentrations inhibited the activity of the TCA cycle, indicating that the oxidative phosphorylation is deactivated by excessive amounts of mediators, yet Shewanella spp. are constrained with regard to carrying out the substrate-level phosphorylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app