JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Potential targets for therapeutic intervention and structure based vaccine design against Zika virus.

Continuously increasing number of reports of Zika virus (ZIKV) infections and associated severe clinical manifestations, including autoimmune abnormalities and neurological disorders such as neonatal microcephaly and Guillain-Barré syndrome have created alarming situation in various countries. To date, no specific antiviral therapy or vaccine is available against ZIKV. This review provides a comprehensive insight into the potential therapeutic targets and describes viral epitopes of broadly neutralizing antibodies (bNAbs) in vaccine design perspective. Interactions between ZIKV envelope glycoprotein E and cellular receptors mediate the viral fusion and entry to the target cell. Blocking these interactions by targeting cellular receptors or viral structural proteins mediating these interactions or viral surface glycans can inhibit viral entry to the cell. Similarly, different non-structural proteins of ZIKV and un-translated regions (UTRs) of its RNA play essential roles in viral replication cycle and potentiate for therapeutic interventions. Structure based vaccine design requires identity and structural description of the epitopes of bNAbs. We have described different conserved bNAb epitopes present in the ZIKV envelope as potential targets for structure based vaccine design. This review also highlights successes, unanswered questions and future perspectives in relation to therapeutic and vaccine development against ZIKV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app