Add like
Add dislike
Add to saved papers

UV-Vis, FTIR, 1 H, 13 C NMR spectra and thermal studies of charge transfer complexes formed in the reaction of Gliclazide with π- and σ-electron acceptors.

Charge transfer interactions (CT) between a gliclazide (GLC) donor and a picric acid (PA) π acceptor or iodine σ acceptor, were studied in a chloroform solution and in the solid state. UV-vis spectroscopy elucidated the formation of the complexes, and allowed determination of the stoichiometry, stability constants (K), and thermodynamic quantities (ΔG°, ΔH°, and ΔS°), and spectroscopic properties such as the molar extinction coefficient (εCT ), oscillator strength (f), transition dipole moment (μEN ), and ionization potential (Ip ). Beer's law was obeyed over the 2-8 and 4-12 μg mL-1 concentration ranges for GLC with PA (method A) and I2 (method B), respectively, with correlation coefficients of 0.9986 and 0.9989. The limits of detection (LOD) and limits of quantification (LOQ) have also been reported. The 1:1 stoichiometric CT complexes were synthesized and characterized by FTIR, 1 H, and 13 C NMR spectroscopy. The results indicated a favorable proton migration from PA to the donor molecule, and an interaction between the NH of GLC and iodine. Thermogravimetric analysis techniques (TGA/DTA) and differential scanning calorimetry (DSC) were used to determine the thermal stability of the synthesized CT complex. The kinetic parameters (ΔG*, ΔH*, and ΔS*) were calculated from thermal decomposition data using the Coats-Redfern method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app