Add like
Add dislike
Add to saved papers

Synthesis, characterization, anti-diabetic potential and DFT studies of 7-hydroxy-4-methyl-2-oxo-2H-chromene-8-carbaldehyde oxime.

A new compound named 7-hydroxy-4-methyl-2-oxo-2H-chromene-8-carbaldehyde oxime (7-Oxime) was synthesized and characterized by FT-IR, FT-Raman, 1 H NMR and 13 C NMR techniques. The conformer possibilities were studied to find the most stable conformer and its molecular geometry. Then, the dimer form of the most stable monomer was built and optimized. Density functional theory (DFT) B3LYP method with 6-311++G(d,p) basis set was applied to analyze the molecular electrostatic potential (MEP), HOMO and LUMO orbitals, the vibrational wavenumbers, the infrared intensities, the Raman scattering activities and several thermodynamic properties (at different temperatures). The stability of the molecule derived from hyperconjugative interactions and charge delocalization has been analyzed by using natural bond orbital (NBO) analysis. In order to find the possible inhibitory activity of 7-Oxime, an accurate molecular blind docking simulation was performed. The results indicated that the mentioned compound has a good binding affinity to interact with the active sites of human α-glucosidase and α-amylase. For the first time, our computational finding suggests that this compound has a potential to be used as a supplementary agent in the pre-management of diabetes mellitus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app