Add like
Add dislike
Add to saved papers

Natural attenuation of TiO 2 nanoparticles in a fractured hard-rock.

Successive transport experiments of TiO2 nanoparticles (NP) suspension through fractured hard-rock column were done in laboratory. A low ionic strength (IS) water (0.8-1.3 10-3 M) at pH ∼4.5 was used, corresponding to the chemical composition of groundwater where the rock was collected (Naizin, France). The surface charge of TiO2 NP was positive while that of rock was negative favoring NP deposition. SEM/EDX reveals that NP were retained on a broad distribution of mineral collectors along the preferential flow pathways (i.e., fractures). However, a non-negligible amount of NP (∼10%) was transferred through the rock. Divalent cation (Ca2+ ) was responsible for the reduction of the negative charge of the rock and thus contributed to limit the NP deposition as attested by DLVO model. Blocking of rock surfaces by NP favored NP transfer while the ripening process and the size exclusion of aggregates decreased NP mobility. Decrease of water flow favored the exchange of solutes from the immobile to the mobile water in the porous medium, which in turn favored the aggregation of the NP and led to their natural attenuation. The result evidences how slight modifications of the environmental conditions can strongly influence the fate of NP in groundwater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app