Add like
Add dislike
Add to saved papers

IAPP/amylin deposition, which is correlated with expressions of ASC and IL-1β in β-cells of Langerhans' islets, directly initiates NLRP3 inflammasome activation.

Recent findings revealed that type 2 diabetes mellitus (T2D) is a chronic inflammatory disease and an islet amyloid polypeptide (IAPP)/amylin, is deposited within pancreatic islets. IAPP/amylin has been reported to activate NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in infiltrated macrophages. NLRP3, an intracellular pattern recognition receptor, has been shown to recognize pathogens and/or metabolites and complexes with the adopter protein apoptosis-associated speck-like protein containing a caspase-recruitment domain ASC to form a huge complex, called an inflammasome, an interleukin (IL)-1β-processing platform. Although reactive oxygen species (ROS) were reported to be involved in activation of NLRP3 inflammasome, we were hypothesized that IAPP could directly activate NLRP3 inflammasome, leading to islets β-cell death. We analyzed expression of the inflammasome components ASC, NLRP3, caspase-1, IL-1β, IAPP/amylin, and insulin immunohistochemically in Langerhans' islets of autopsy cases. The initial event of NLRP3 inflammasome activation was assessed using a cell-free system consisting of NLRP3 and ASC with the amplified luminescent proximity homogeneous assay. IAPP/amylin deposition in Langerhans' islets was detected and significantly correlated with expressions of IL-1β and ASC. IAPP/amylin directly interacted with NLRP3 and initiated an interaction between NLRP3 and ASC in a cell-free system. The deposition of IAPP/amylin in β-cells of Langerhans' islets may act together with the expression level of an inflammasome component, ASC, to regulate IL-1β processing, and directly lead to the dysfunction of β-cells. The interaction between IAPP/amylin and NLRP3 could be an attractive drug target to avoid both inflammation and β-cell death for T2D therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app