Add like
Add dislike
Add to saved papers

Chirping and asymmetric jamming avoidance responses in the electric fish Distocyclus conirostris .

Electrosensory systems of weakly electric fish must accommodate competing demands of sensing the environment (electrolocation) and receiving social information (electrocommunication). The jamming avoidance response (JAR) is a behavioral strategy thought to reduce electrosensory interference from conspecific signals close in frequency. We used playback experiments to characterize electric organ discharge frequency (EODf), chirping behavior and the JAR of Distocyclus conirostris , a gregarious electric fish species. EODs of D. conirostris had low frequencies (∼80-200 Hz) that shifted in response to playback stimuli. Fish consistently lowered EODf in response to higher-frequency stimuli but inconsistently raised or lowered EODf in response to lower-frequency stimuli. This led to jamming avoidance or anti-jamming avoidance, respectively. We compare these behaviors with those of closely related electric fish ( Eigenmannia and Sternopygus ) and suggest that the JAR may have additional social functions and may not solely minimize the deleterious effects of jamming, as its name suggests.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app