JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Scaling Relationship of In Vivo Muscle Contraction Strength of Rabbits Exposed to High-Frequency Nanosecond Pulse Bursts.

We studied the influence of various parameters of high-frequency nanosecond pulse bursts on the strength of rabbit muscle contractions. Ten unipolar high-frequency pulse bursts with various field intensities E (1 kV/cm, 4 kV/cm, and 8 kV/cm), intraburst frequencies f (10 kHz, 100 kHz, and 1 MHz), and intraburst pulse numbers N (1, 10, and 100) were applied using a pair of plate electrodes to the surface skin of the rabbits' biceps femoris, and the acceleration signal of muscle contraction near the electrode was measured using a 3-axis acceleration sensor. A time- and frequency-domain analysis of the acceleration signals showed that the peak value of the signal increases with the increasing strength of the pulse burst and that the frequency spectra of the signals measured under various pulse bursts have characteristic frequencies (at approximately 2 Hz, 32 Hz, 45 Hz, and 55 Hz). Furthermore, we processed the data through multivariate nonlinear regression analysis and variance analysis and determined that the peak value of the signal scales with the logarithm to the base 10 of EN x , where x is a value that scales with the logarithm to the base 10 of intraburst frequency (f). These results indicate that for high-frequency nanosecond pulse treatment of solid tumors in or near muscles, when the field strength is relatively high, the intraburst frequency and the intraburst pulse number require appropriate selection to limit the strength of muscle contraction as much as possible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app