Add like
Add dislike
Add to saved papers

Auger Heating and Thermal Dissipation in Zero-Dimensional CdSe Nanocrystals Examined Using Femtosecond Stimulated Raman Spectroscopy.

We report femtosecond stimulated Raman spectroscopy (FSRS) measurements on dispersions of CdSe semiconductor nanocrystals (NCs) as a function of particle size and pump fluence. Upon photoexcitation, we observe depletion of stimulated Raman gain corresponding to generation of longitudinal optical (LO) phonons followed by recovery on picosecond timescales. At higher fluences, production of multiple excitons slows recovery of FSRS signals, which we attribute to sustained increases of LO phonon populations due to multiexcitonic Auger heating. Owing to the discretized electronic structure of these NCs, such heating cannot be readily monitored via electronic spectroscopic analysis of high-energy band tails as has been performed for higher-dimensional materials. Notably, recovery timescales exceed those of the biexcitonic Auger recombination process and as such reveal overall thermalization timescales likely owing to an acoustic phonon thermalization bottleneck that dictates the cooling timescale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app