Add like
Add dislike
Add to saved papers

Crossing Classified and Corrected Fewest Switches Surface Hopping.

In the traditional fewest switches surface hopping (FSSH), trivial crossings between uncoupled or weakly coupled states have highly peaked nonadiabatic couplings and thus are difficult to deal with in the preferred, adiabatic representation. Here, we classify surface crossings into four general types and propose a parameter-free crossing corrected FSSH (CC-FSSH) algorithm, which could treat multiple trivial crossings within a time interval. As examples, Holstein Hamiltonians with different parameters are adopted to mimic electron dynamics in tens to hundreds of molecules, which suffer from severe trivial crossing problems. Using existed surface hopping approaches as references, we show that CC-FSSH exhibits significantly fast time interval convergence and weak system size dependence. In all cases, a reliable description is achieved with a large time interval of 1 fs. With a simple formalism and the ability to describe complex surface crossings, CC-FSSH could potentially simulate general nonadiabatic dynamics in nanoscale materials with a high efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app