Add like
Add dislike
Add to saved papers

De Novo Molecular Design of a Novel Octapeptide That Inhibits In Vivo Melanogenesis and Has Great Transdermal Ability.

Cutaneous hyperpigmentation from excess melanogenesis causes serious pigmentary disorders and even melasma. Short peptides (SPs) are garnering attention lately owing to their therapeutic potential in dermatological diseases and low systemic side effects. Here, we show an octapeptide, ansin2, designed de novo from antioxidant SPs we previously reported, significantly inhibiting melanogenesis in B16 cells by decreasing tyrosinase production via regulating the MITF pathway. Ansin2 could also inhibit tyrosinase function by covering its catalytic pocket, which was simulated in docking and LIGPLOT studies. Topical application of ansin2 exhibited evident protection in UVB-induced pigmentation in guinea pig models both in terms of prophylaxis and treatment. Interestingly, unlike other hydrophilic and peptidic drugs that need delivery systems, ansin2 can be efficiently delivered topically to the epidermis and dermis per se without an affiliated moiety. Given that ansin2 lacks unwanted toxicities and immunogenicity, it holds great potential in treating hyperpigmentation in the cosmetics and pharmaceutical industries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app