Add like
Add dislike
Add to saved papers

Circular permutation of a bacterial tyrosinase enables efficient polyphenol-specific oxidation and quantitative preparation of orobol.

Tyrosinase is a type-3 copper oxygenase that catalyzes a phenol moiety into ortho-diphenol, and subsequently to ortho-quinone. Diverse tyrosinases have been observed across the kingdom including Animalia, Bacteria, Plantae, and Fungi. Among the tyrosinases, bacterial and mushroom tyrosinases have been extensively exploited to prepare melanin, ortho-hydroxy-polyphenols or novel plant secondary metabolites during the past decade. And their use as a biocatalyst to prepare various functional bio-compounds have drawn great attention worldwide. Herein, we tailored a bacterial tyrosinase BmTy using circular permutation (CP) engineering technique which is a novel enzyme engineering technique to covalently link original N and C-termini and create new termini on the middle of its polypeptide. To construct a smart rationally-designed CP library, we introduced 18 new termini at the edge of each nine loops that link α-helical secondary structure in BmTy. Among the small library, seven functional CP variants were successfully identified and they represented dramatic change in their enzyme characteristics including kinetic properties and substrate specificity. Especially, cp48, 102 and 245 showed dramatically decreased tyrosine hydroxylase activity, behaving like a catechol oxidase. Exploiting the dramatic increased polyphenol oxidation activity of cp48, orobol (3'-hydroxy-genistein) was quantitatively synthesized with 1.48 g/L, which was a 6-fold higher yield of truncated wild-type. We examined their kinetic characters through structural speculation, and suggest a strategy to solubilize the insoluble artificial variants effectively. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app