JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Fabrication of Gradient Nanopattern by Thermal Nanoimprinting Technique and Screening of the Response of Human Endothelial Colony-forming Cells.

Nanotopography can be found in various extracellular matrices (ECMs) around the body and is known to have important regulatory actions upon cellular reactions. However, it is difficult to determine the relation between the size of a nanostructure and the responses of cells owing to the lack of proper screening tools. Here, we show the development of reproducible and cost-effective gradient nanopattern plates for the manipulation of cellular responses. Using anodic aluminum oxide (AAO) as a master mold, gradient nanopattern plates with nanopillars of increasing diameter ranges [120-200 nm (GP 120/200), 200-280 nm (GP 200/280), and 280-360 nm (GP 280/360)] were fabricated by a thermal imprinting technique. These gradient nanopattern plates were designed to mimic the various sizes of nanotopography in the ECM and were used to screen the responses of human endothelial colony-forming cells (hECFCs). In this protocol, we describe the step-by-step procedure of fabricating gradient nanopattern plates for cell engineering, techniques of cultivating hECFCs from human peripheral blood, and culturing hECFCs on nanopattern plates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app