Add like
Add dislike
Add to saved papers

Generalized mean apparent propagator (GMAP) MRI to measure and image advective and dispersive flows in medicine and biology.

Water transport in biological systems spans different regimes with distinct physical behaviors: diffusion, advection, and dispersion. Identifying these regimes is of paramount importance in many in vivo applications, among them, measuring microcirculation of blood in capillary networks and cerebrospinal fluid (CSF) transport in the glymphatic system. Diffusion magnetic resonance imaging (dMRI) can be used to encode water displacements, and a Fourier transform of the acquired signal furnishes a displacement probability density function, known as the propagator. This transformation normally requires the use of a fast Fourier transform (FFT), which presents major feasibility challenges when scanning in vivo, mainly because of dense signal sampling, resulting in long acquisition times. A second approach to reconstruct the propagator is by using analytical representation of the signal, overcoming many of the FFT's limitations. In all analytical implementations of dMRI to date, the translational motion of water has been assumed to be exclusively diffusive, which is the case only in the absence of flow. However, retaining the phase information from the diffusion signal provides the ability to measure both mean coherent velocity and random diffusion from a single experiment. We implement and extend an analytical framework, mean apparent propagator (MAP), which can account for non-zero flow conditions. We call this method generalized MAP, or GMAP. We describe a numerical optimization scheme and implement it on data from an MRI flow phantom constructed from a pack of 10 μm beads. The advantages of GMAP over the FFT-based method in the context of sampling density and low-flow detection were demonstrated, and analytically derived propagator moments were shown to agree with theoretical values even after data subsampling. GMAP would enables the detection of microflow in vivo that could help elucidate many important biological processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app