JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dual effects of baicalin on osteoclast differentiation and bone resorption.

Osteoclasts (OC) are critical cells responsible for many bone diseases such as osteoporosis. It is of great interest to identify agents that can regulate the activity of OC to treat osteolytic bone diseases. In this study, we found that baicalin exerted a two-way regulatory effect on OC in a concentration-dependent manner in vitro and in vivo. In detail, baicalin at a low concentration (below 1 μmol/L) enhanced OC differentiation and bone resorption, but baicalin at a high concentration (above 2 μmol/L) exhibited inhibitory effects on OC. We demonstrated that baicalin at low concentrations enhanced the mitogen-activated protein kinase (MAPK) (ERK) signalling pathway and activated c-Fos and NFATc1 expression, and thus enhanced gene expression, OC differentiation and bone resorption. However, baicalin at higher levels not only suppressed ERK phosphorylation and c-fos and NFATc1 expression, but also altered the expression of apoptosis-related proteins, and therefore inhibiting OC function. This dual effect was further verified in an LPS-induced mouse calvarial osteolysis model, evidenced by enhanced osteolysis at a lower concentration but reduced bone loss at a higher concentration. Overall, our findings indicate that baicalin exerts dose-dependent effects on OC formation and function. Therefore, caution should be applied when using baicalin to treating OC-related bone diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app