Add like
Add dislike
Add to saved papers

In vivo stability evaluation of Mg substituted low crystallinity ß-tricalcium phosphate granules fabricated through dissolution-precipitation reaction for bone regeneration.

Biomedical Materials 2018 August 16
Although β-tricalcium phosphate (β-TCP) is widely used in clinical applications as a bone substitute owing to its positive tissue response and its ability to be replaced by new bone through a bone-remodeling process, it has the limitation of rapid resorption in vivo, which might become a reason for tissue atrophy and high crystallinity, which decrease biocompatibility. A reduction in the crystallinity might increase the biocompatibility of the bone substitute. To overcome the drawbacks of β-TCP, decrease in crystallinity and solubility, both are required. Therefore, in this study, the feasibility of fabricating Mg substituted low crystalline β-TCP (Mg-LC-β-TCP) granules formed in aqueous solution was evaluated in vivo focusing long-term adsorption and bone formation in bone defects formed in the rabbit femur using sintered β-TCP granules as a control. With Mg-LC-β-TCP, the resorption of the substitute was suppressed, and no tissue atrophy was observed even at 24 weeks post-implantation, whereas a few granules with surrounding tissue atrophy were observed at 12 weeks post-implantation. Tartrate-resistant acid phosphatase-staining indicated that the density of osteoclasts type cells with Mg-LC-β-TCP was significantly lower than that with β-TCP, and also the numbers of osteoblasts type cells with Mg-LC-β-TCP were significantly higher than that with β-TCP. It is suggested that Mg substitution to form low crystallinity β-TCP is a valuable way to overcome the limitations of β-TCP as a bone substitute.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app