Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

TRAF3 enhances STING-mediated antiviral signaling during the innate immune activation of black carp.

Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a main regulator of antiviral and anti-inflammatory pathways in mammals, which is considered to induce type I interferon (IFN) activation and negatively regulate the activation of the canonical and non-canonical NF-κB pathways. To elucidate its function in teleost fish, TRAF3 homologue of black carp (Mylopharyngodon piceus) has been cloned and characterized in this study. The open reading frame (ORF) of black carp TRAF3 (bcTRAF3) consists of 1722 nucleotides and bcTRAF3 contains 574 amino acids. bcTRAF3 protein migrated around 65 KDa in immunoblot analysis of both EPC and HEK293T cells. bcTRAF3 was identified as a cytosolic protein and suggested to form aggregates or be associated with vesicles scattering in the cytoplasm. It was interesting that both NF-κB and IFN transcription was activated by bcTRAF3 in reporter assay. When co-expressed with black carp STING (bcSTING), bcTRAF3 was redistributed in the cytoplasm and its subcellular location overlapped with that of bcSTING no matter what the cells was infected with GCRV or not, which suggested the association between these two molecules. bcSTING-mediated IFN production was up-regulated by bcTRAF3 in a dose dependent manner in reporter assay. Accordingly, EPC cells transfected with both bcSTING and bcTRAF3 showed enhanced antiviral activity comparing EPC cells expressing bcSTING alone. Taken together, the data generated in this paper supported the conclusion that bcTRAF3 was recruited into host innate immune activation and positively regulated bcSTING-mediated antiviral signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app