Add like
Add dislike
Add to saved papers

Physicochemical Analysis of DPPC and Photopolymerizable Liposomal Binary Mixture for Spatiotemporal Drug Release.

Analytical Chemistry 2018 August 8
The development of a spatiotemporal drug delivery system with a long release profile, high loading efficiency, and robust therapeutic effects is still a challenge. Liposomal nanocarriers have secured a fortified position in the biomedical field over decades. Herein, liposomal binary mixtures of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and photopolymerizable 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DC8,9 PC) phospholipids were prepared for drug delivery applications. The diacetylenic groups of DC8,9 PC produce intermolecular cross-linking following UV irradiation. Exposure of the liposomal mixture to 254 nm radiation induces a pore within the lipid bilayer, expediting the release of its entrapped 5,6-carboxyfluorescein dye. The dosage and rate of the released content are highly dependent on the number and size of the induced pore. Photochemical cross-linking studies at different exposure times were reported through the analysis of UV-visible spectrophotometry, nano differential scanning calorimetry, Fourier transform infrared spectroscopy, and Raman spectroscopy. The optimal irradiation time was established after 8 min of exposure, inducing lipid cross-linking with minimal oxidative degradation, which plays an essential role in the pathogenesis of numerous diseases due to the formation of primary and secondary oxidation products, accordingly reducing the encapsulated drug therapeutic level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app