Add like
Add dislike
Add to saved papers

Controlling Interactions of Cyclic Oligosaccharides with Hetero-Oligomeric Nanopores: Kinetics of Binding and Release at the Single-Molecule Level.

Small 2018 August
Controlling the molecular interactions through protein nanopores is crucial for effectively detecting single molecules. Here, the development of a hetero-oligomeric nanopore derived from Nocardia farcinica porin AB (NfpAB) is discussed for single-molecule sensing of biopolymers. Using single-channel recording, the interaction of cyclic oligosaccharides such as cationic cyclodextrins (CDs) of different symmetries and charges with NfpAB is measured. Studies of the transport kinetics of CDs reveal asymmetric geometry and charge distribution of NfpAB. The applied potential promotes the attachment of the cationic CDs to the negatively charged pore surface due to electrostatic interaction. Further, the attached CDs are released from the pore by reversing the applied potential in time-resolved blockages. Release of CDs from the pore depends on its charge, size, and magnitude of the applied potential. The kinetics of CD attachment and release is controlled by fine-tuning the applied potential demonstrating the successful molecular transport across these nanopores. It is suggested that such controlled molecular interactions with protein nanopores using organic templates can be useful for several applications in nanopore technology and single-molecule chemistry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app