Add like
Add dislike
Add to saved papers

Biosynthesis of Oxylipins by Rhizoctonia solani with Allene Oxide and Oleate 8S,9S-Diol Synthase Activities.

Lipids 2018 May
Oxylipin biosynthesis by fungi is catalyzed by both the lipoxygenase (LOX) family and the linoleate diol synthase (LDS) family of the peroxidase-cyclooxygenase superfamily. Rhizoctonia solani, a pathogenic fungus, infects staple crops such as potato and rice. The genome predicts three genes with 9-13 introns, which code for tentative dioxygenase (DOX)-cytochrome P450 fusion enzymes of the LDS family, and one gene, which might code for a 13-LOX. The objective was to determine whether mycelia or nitrogen powder of mycelia oxidized unsaturated C18 fatty acids to LDS- or LOX-related metabolites. Mycelia converted 18:2n-6 to 8R-hydroxy-9Z,12Z-octadecadienoic acid and to an α-ketol, 9S-hydroxy-10-oxo-12Z-octadecenoic acid. In addition to these metabolites, nitrogen powder of mycelia oxidized 18:2n-6 to 9S-hydroperoxy-10E, 12Z-octadecadienoic, and 13S-hydroperoxy-9Z,11E-octadecadienoic acids; the latter was likely formed by the predicted 13-LOX. 18:1n-9 was transformed into 8S-hydroperoxy-9Z-octadecenoic and into 8S,9S-dihydroxy-10E-octadecenoic acids, indicating the expression of 8,9-diol synthase. The allene oxide, 9S(10)epoxy-10,12Z-octadecadienoic acid, is unstable and decomposes rapidly to the α-ketol above, indicating biosynthesis by 9S-DOX-allene oxide synthase. This allene oxide and α-ketol are also formed by potato stolons, which illustrates catalytic similarities between the plant host and fungal pathogen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app