Add like
Add dislike
Add to saved papers

Inhibiting the proliferation and metastasis of hilar cholangiocarcinoma cells by blocking the expression of vascular endothelial growth factor with small interfering RNA.

Oncology Letters 2018 August
The aim of the present study was to investigate whether the proliferation and metastasis of hilar cholangiocarcinoma cells can be suppressed and whether apoptosis can be induced by small interfering RNA (siRNA) repression of vascular endothelial growth factor (VEGF). siRNA sequences targeting the VEGF gene were designed and the human hilar cholangiocarcinoma QBC939, HCCC-9810 and RBE cell lines were transfected with VEGF-siRNA plasmids for 48 h. Reverse transcription-quantitative polymerase chain reaction and western blotting measured the levels of VEGF-A, VEGF-C and matrix metalloproteinase 2 (MMP2) mRNA expression and protein content. The cell invasion potential was evaluated using the Transwell invasion and migration assay and the MTT assay was employed to detect the proliferation of hilar cholangiocarcinoma cells. Flow cytometry was used to quantify cell apoptosis and necrosis. Following the transfection of VEGF-siRNA, a significant reduction of mRNA and protein levels of VEGF-A, VEGF-C and MMP2 was observed in the hilar cholangiocarcinoma cells. The invasion, migration and proliferation of tumor cells were also notably decreased. The rate of tumor cell apoptosis was increased in the VEGF-siRNA group (15.42%) compared with the non-siRNA control (2.22%) and the negative control (2.71%) groups. It was concluded that blocking the expression of VEGF via VEGF-siRNA effectively inhibited the invasion, migration and proliferation, and induced apoptosis in hilar cholangiocarcinoma cells. These observations suggested that targeting VEGF with RNAi may be an effective therapeutic strategy for treating hilar cholangiocarcinoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app