Add like
Add dislike
Add to saved papers

Suppressing Nodal Signaling Activity Predisposes Ectodermal Differentiation of Epiblast Stem Cells.

Stem Cell Reports 2018 July 11
The molecular mechanism underpinning the specification of the ectoderm, a transient germ-layer tissue, during mouse gastrulation was examined here in a stem cell-based model. We captured a self-renewing cell population with enhanced ectoderm potency from mouse epiblast stem cells (EpiSCs) by suppressing Nodal signaling activity. The transcriptome of the Nodal-inhibited EpiSCs resembles that of the anterior epiblast of embryonic day (E)7.0 and E7.5 mouse embryo, which is accompanied by chromatin modifications that reflect the priming of ectoderm lineage-related genes for expression. Nodal-inhibited EpiSCs show enhanced ectoderm differentiation in vitro and contribute to the neuroectoderm and the surface ectoderm in postimplantation chimeras but lose the propensity for mesendoderm differentiation in vitro and in chimeras. Our findings show that specification of the ectoderm progenitors is enhanced by the repression of Nodal signaling activity, and the ectoderm-like stem cells provide an experimental model to investigate the molecular characters of the epiblast-derived ectoderm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app