Add like
Add dislike
Add to saved papers

Sodium Butyrate Improves High-Concentrate-Diet-Induced Impairment of Ruminal Epithelium Barrier Function in Goats.

We investigated the effect of sodium butyrate feeding on the disruption of ruminal epithelium barrier function in goats fed a high-concentrate diet. A total of 18 male Boer goats (live weight of 31.75 ± 1.35 kg, aged 1 year) were randomly assigned to three groups, which were fed a low-concentrate diet (LC), a high-concentrate diet (HC), or a high-concentrate diet with 1% sodium butyrate by weight (SH) for 9 weeks. We found that the pH of rumen fluid in the SH and LC groups was higher than that in the HC group. The activity of protein kinase C (PKC) kinase in the rumen epithelium was higher in the HC group than that in the LC and SH groups. The mRNA expression and phosphorylated protein levels of mitogen-activated protein kinases (MAPKs) in the rumen epithelium were lower in the SH and LC groups than those in the HC group. The DNA methylation rate of occludin was higher in the HC group than that in the SH and LC groups. The mRNA and protein expression of claudin-1, claudin-4, occludin, and zona occludin-1 was greater in the SH and LC groups than that in the HC group. In addition, sodium butyrate mitigated damage to the rumen epithelium caused by the HC diet. Together, our results suggest that the supply of sodium butyrate reverses the damage of rumen epithelium tight junction by inhibiting PKC and MAPK signaling pathways and is protective to the rumen epithelium during subacute rumen acidosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app